Music Composition using an Autoencoder Network *

Jahya Burke!, Yisheng Ji?, Shiwei Rong?, Shuangcheng Yang* and Alan Yessenbayev®

Department of Electrical and Computer Engineering
University of California, San Diego
La Jolla, USA

Email: {*j1burke, 2y3ji, 3srong, “shy003, ®ayessenb} @ucsd.edu

Abstract

Our team utilized an autoencoder neural network archi-
tecture to solve a problem of music composition. We ex-
plored the effects of training the network with MIDI tracks
Jfrom video game compositions developed for different types
of hardware, while also observing changes in the hyper-
parameters of the network (layers sizes, learning rate, etc.).

Artificial Autoencoder, Generative Model

1. Introduction

The power of artificial intelligence and machine learn-
ing increased productivity in various fields of human en-
deavour, while also displaying great potential to assist art
creators. We tackled the problem of music composition be-
cause it is relevant and generative in its nature. We dis-
covered the autoencoder approach from YouTube content
creator CodeParade [4], which captured our attention be-
cause it is an unusual approach to analyzing time-series
data. Since musical data is usually thought of as time-series
data, Recurrent Neural Networks are usually networks of
choice for these types of data [5].

For the purpose of this project, we used an autoencoder
for music composition. An autoencoder is a type of artifi-
cial neural network used to learn efficient data encodings in
an unsupervised manner. The autoencoder is trained to rep-
resent the output of the network as close as possible to its
original input. This reconstruction property allows the net-
work to perform dimensionality reduction by having a bot-
tleneck layer with few nodes. The nodes on the bottleneck
layer form a dense representation of the data, since they can
be used to reconstruct an input. With linear activation, the
bottleneck layer of the autoencoder represents the principal

*ECE 271B Project, San Diego, US, 2019

components of the data [5]. Recently, the autoencoder has
become wildly used for learning generative models of data.

When autoencoders are applied to music generation, we
can train the composer model to learn a dense representa-
tion of music and then use the decoder to generate music.
To be successful at this, we must establish a solid autoen-
coder architecture, identify a meaningful dataset and train
the network effectively. We need to setup the structure of
the autoencoder model first. Addtionally, training datasets
are used to get weights for several hidden layers. As a re-
sult, we should get a dimensionality reduction autoencoder
neural network that can still reconstruct the original input
data. In the end, we take the decoder part and use the acti-
vation layers as control inputs. The goal is to establish an
Al music composition writer that is unique and harmoni-
cally pleasant.

2. Methods
2.1. Data

In this project, we downloaded video game .midi files
from VGmusic.com (6] and used a Python package called
Mido (2] to translate MIDI files into a 96 notes by 96 ticks
square form as our data. Figure [I] shows the form of our
data structure.

2.2. Mathematical Setup

Classical music and jazz are more free form without def-
inite structure like verse chorus and bridge. Thus we started
on video music since there is a lot of available data online
and it is usually catchy and repetitive with strong music
structure. We were mostly interested in creating looping
music, as autoencoder architecture is powerful for learning
patterns of the over all data. In some sense, we hoped that
musical snippets of fixed length have a fractal structure that
autoencoder will potentially learn.

Network Input 2,
(S)

— . | 96 Pitch

I Qe |
J0

Time

Figure 1: The data structure for the audio sample

The two techniques utilized are the Convolution Neural
Network (CNN) and Long-Short Term Memory (LSTM).
Since we are dealing with spatially structured data and time-
structured data, both of these methods produce inaccurate
results on structured music. For CNNs the assumption is
made that there is a close relationship between pixels and
their immediate neighbors. This is very true in images, but
it is not true for piano rolls. The note most correlated with
a single note is generally much farther away in the same
measure or on different measures, so locality is not mean-
ingful. As for LSTM, it can do great with free form music
since you only need to know the recent context to generate
the next notes. However, since we are trying to generate
structured songs the network needs to know the entire con-
text of the song at the same time. Therefore, we decided to
use an autoencoder network because of its ability to learn
the underlying structure of a data set. Figure[2]displays our

Input Output
Measures Measures

(-0 G
D! I [R (ST
WD ()| |
ol 0 &

|-----Encoders--—| |-----Decoders-----|

Figure 2: Network Architecture

network architecture. What we ended up doing is creating a
dense neural network to encode each measure into a feature
vector. Feeding those into a dense autoencoder, which then
outputs another feature vector that finally gets, converted
back a measure. It is like two autoencoders in the same net-

work. The autoencoder is very powerful generative method
in probabilistic modeling of raw audio because it is capa-
ble of randomly generating new data that looks similar to
the training data. In the following example, we describe our
autoencoder structure. This architecture can attain consis-
tent long-term structure and therefore is ideal for our video
game music composition task. For encoding and decoding
the measures we picked 200 dimensions and for decoding
and encoding the song we chose 120 dimensions. These
values, which have a much lower dimensionality than the
input data, seem to be a good balance. The structure now
looks similar to multilayer perceptron. There is input layer,
an output layer and 3 hidden layers connecting them. For an
autoencoder network, the number of nodes in output layer
is the same amount as the input layer and with the purpose
of reconstructing its own inputs.

In our autoencoder architecture, at each step a stack of
dilated convolutions predicts the next sample of audio from
a fixed-size input of prior sample values. The joint proba-
bility of the audio x is factorized as a product of conditional
probabilities:

N

p(z) = ZP(%|$1, e TN-1) ey

i=1

Our training goal is to minimize reconstruction errors or
called loss and find the optimal weights values for each
layer inside the autoencoder model. We do a feed-forward
pass to compute activation functions at all hidden layers to
the end of output layer to get an output vector z’. Next,
calculate out the difference or the loss between the input
vector x and output vector 2’ using cross entropy. Then
back-propagate the error through the neural net and update
each individual layers weight. After we finished training

Generated
Song
Song '
Parameters —| M

1

M

[N

i
=

-

Figure 3: Neural Composer

the encoder-decoder, we use the decoder part to act as the

composer and the bottleneck layer acts as the control inputs
of our composer, as shown in Figure @

2.3. Technical Approach

If the MIDI file consists of multiple track, we mapped
all of the tracks. If the file did not conform to our struc-
ture, we would pad the audio sample to get to the size of 16
measures.

To implement the architecture we use Keras [3] with Ten-
sorflow backend [1]]. We use binary cross-entropy loss func-
tion with RMSProp optimizer of step size 0.001. We use
mini-batch gradient descent with the batch size of 200. No
dropout is applied during training.

After our composer finished training, we ran various
inputs through it to produce music. We trained 3 differ-
ent networks using 3 different subsets of data (Piano Only,
PlayStation 1, and all data). As the decoder produces prob-
abilities, we set a threshold (0.5 in our case). If the proba-
bility value is above that threshold, we play the note. We set
the tempo, the velocity, and the instrument manually. Our
architecture only supports staccato (with each note sharply
detached or separated from the others) style of play, as we
only registered the “key down” event in the MIDI file during
conversion to piano roll format.

3. Experiments

As was stated previously, the network was trained on 3
datasets: Piano music, PlayStation 1 music and all music.
The loss achieved during training can be seen in Figure [3]
and[f]respectively. All three networks exhibit similar trends
in the loss during training. The training loss continues to
reduce across epochs, but the validation loss does not im-
prove significantly from the starting value. This is an indi-
cation that we are over fitting our model to the training data.
For our application, this will result in some of the compo-
sitions performing poorly in regards to uniqueness. This is
a result that we noted when listening to resulting music and
evaluating it qualitatively as well.

3.1. Insight

One of our goals was for our music to sound harmonic
and correct when looped, as this is a characteristic of video
game music. We decided to rely on music theory to assess
how well the compositions performed when looped. In mu-
sic theory, the key signature of the composition acts as a
declaration of coordinate system. In a sense, we are inter-
ested in the distance between the notes and the base note
of the key signature (usually the root of the chord played in
the base line). For our purposes, perfect unions, fourths and
fifths produce the most harmonic transition between chords
and notes. [[/]. This respectively translates to 0, 5 and 7
semitones (pitch steps) =12 semitones (octave is 12 semi-
tones) from the base note of the composition. Usually what-

Piano Network Reconstruction Loss: 120 Bottleneck Nodes

| = Train

bé Validation

05

0.4

Loss

03
02

01 \
0 20 40 B0 a0 100
Epoch

Figure 4: Loss for networked trained with Piano music.

PS1 Metwork Reconstruction Loss: 120 Bottleneck Nodes

—— Train
0.30 Validation
0.25
2 020
g0
0.15
010
0 20 P £ 80 100

Epoch

Figure 5: Loss for networked trained with PS1 music.

All Music Network Reconstruction Loss: 120 Bottleneck Nodes

—— Train
Walidation

Loss

20

10

D 20 P &0 80 100
Epoch

Figure 6: Loss for networked trained with all music.

ever is being played in the lower pitches is the bass line that
keeps the beat of the composition. So if the baseline notes
are kept consistent across loops you can note that the com-
position will produce a harmonic transition. Figure[7]shows

Figure 7: Output Composition Piano Rolls

the several outputs of our network looped on itself. Each
row is a different composition. The darker gray points indi-
cate the transition to the repeated portion. We can see that
harmonically networks did not learn anything complicated
as they aim for unison intervals in the bass line of the com-
positions. If you look to the lower notes they are consistent
in the transition from the first loop to the second loop. We
can see that this relationship is maintained for each network
that we tested. This shows that our networks were success-
ful in their aim to produce harmonically sound looping mu-
sic.

3.2. Parameter Tuning

Reconstruction Loss

—— Train
Walidation

38

3T A

3.6 4

Loss

35

3.4 4

33

® 5 5 75 100 125 150 175 200
Dense Layer Nodes

Figure 8: Bottleneck layer loss analysis.

In order to assure the validity of our model structure, we
chose to investigate how many hidden nodes were needed
to accurately reconstruct the data. The number of nodes in
the bottle neck layer reflect the dimensionality of the input
space. If too few nodes are used it will result in an inability
to reconstruct the data. If too many nodes are used it is a
waste of resources. To measure the number of nodes needed

in the bottle neck layer we looked at the reconstruction loss
of the autoencoder. The reconstruction loss utilizes binary
cross entropy loss to measure how well the output of the
network matches the input.

Figure 8] shows the reconstruction loss on the validation
set and the test set for networks with different number of
nodes in the bottleneck layer. It can be seen that the re-
construction loss is high when less than 25 nodes are used
or when more than 125 nodes are used. This suggests that
a minimum number of nodes in the bottleneck layer is 25.
With fewer nodes the network cannot accurately reconstruct
the data and thus will likely perform poorly in generating
music. In using more than 125 nodes it is possible that there
is not enough data to accurately represent such a large fea-
ture space. To account for these findings we chose to use
100 nodes in our bottleneck layer. Given these findings,
this should be enough to represent the data well.

3.3. Validation

Finally, we decided to run a subjective test to see how
people react to different compositions that were presented.
We designed an experiment. We created a Google Form
and uploaded 6 compositions online, 2 from each subset
we trained on. Then we shuffled them and presented them
in the survey in an arbitrary order. We asked respondents
whether the compositions sound like music, whether the
liked them, and also asked them to rate whether composi-
tions were close to completion and how original they were,
both on the scale from 1 to 10.

The results of the survey are presented at the last page of
the report. Our survey had 31 respondents. For the pair of
binary questions, we see that dataset with all compositions
has the least appeal to the public with 61% of people report-
ing distaste and 40% of people reporting that the composi-
tions did not sound like music. The network trained on pi-
ano music is the most popular with 59% of people reporting
they enjoyed the compositions and 77% of people report-
ing that the compositions sounded like music. The network
trained on music from the playstation 1 followed relatively
closely behind the piano music network with 51% of people
reporting they enjoyed the compositions and 74% reporting
that the compositions sound like music.

Interestingly, one of the outputs of the composer over-
fitted so drastically, that it ended up being an arrangement
of ”Chocobo Theme” by Nobuo Uematsu. We decided to
throw that composition into the survey as well, as a part of
the piano subset. The results of the survey supported this
realization. In general people regarded that composition as
more musically pleasing but less unique.

The plot for scores show the mean and the standard devi-
ation of the scores received by each subset and the overfitted
example. We can see that as the quality of songs deteriorate
people call compositions more original and less finished.

The overfitted example is an obvious outlier, being the less
original and the most finished. This shows, that subjective
survey could detect features that are of interest to us and
proves that at this state our tool is more of a music idea
generator than full-on composer.

4. Conclusion

This project shed light onto possible solutions that can be
implemented with regards to machine-assisted music com-
position. As we saw, our composer picks up on simple har-
monic patterns and plays safe with regards to new musical
ideas. It is possible that with further training our composer
would start using more complex harmonic intervals, how-
ever, there is danger of over fitting.

We see that choosing a song of particular structure (cer-
tain subset of data) is better for the quality of composi-
tions, as musical ideas remain grounded and liked by peo-
ple. Training the network with all data is not that useful as
differences in structure and form of compositions wash out
appealing details from the produced compositions.

Essentially, this network could be a module in a bigger
musical solution, that would help the process of composi-
tion take off. Further research needs to head in the direction
of adding a recursive component to the network, to encode
the temporal component into the structure of the network.

References

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from
tensorflow.org.

[2] Ole Martin Bjorndalen. Mido - midi objects for python.
https://mido.readthedocs.1i0.

[3] Francois Chollet. Keras. https://github.com/
fchollet/keras, 2015.

[4] CodeParade. Generating songs with neural networks
(neural composer), July 2018.

[5] Aurelien Geron. Hands-On Machine Learning with
Scikit-Learn and TensorFlow: Concepts, Tools, and

Techniques to Build Intelligent Systems. O’Reilly Me-
dia, Inc., 1st edition, 2017.

[6] Mike Newman, Shane Evans, Mark Carroll, Jace Hill,
and Daylon Camarena. Video game music archive,
2017.

[7] Godfrey Weber. Definition of perfect consonance in
godfrey weber’s general music teacher, 1841.

https://mido.readthedocs.io
https://github.com/fchollet/keras
https://github.com/fchollet/keras

Do you like it? All Is it music? All

Do you like it? Piano Is it music? Piano

Do you like it? PS1 Is it music? PS1

How original is the composition? How close is the track to being a full-fledged compostion?
10 10
8 8
6 6
z 2
8 &
4 4
2 2
0 0
Piano P81 All Overfit Fiano P31 All Overfit

