
A Survey of Information Acquisition in Neural Object
Detection Systems

Alan Yessenbayev
A92411003

ECE Department
UC San Diego

La Jolla CA, 92092
ayessenb@ucsd.edu

Jahya Burke
A99066017

ECE Department
UC San Diego

La Jolla CA, 92092
j1burke@ucsd.edu

Nihar Wahal
A12910066

ECE Department
UC San Diego

La Jolla CA, 92092
nwahal@ucsd.edu

Sayan Mondal
A53250015

MAE Department
UC San Diego

La Jolla CA, 92092
samondal@eng.ucsd.edu

Abstract

Our goal is to assess neural network architectures in the task of object detection,
followed by appropriate image segmentation. We evaluated Faster RCNN and
YOLOv3 models for various metrics.

1 Introduction

Object detection is widely used in computer vision applications, usually alongside image classification,
to interpret all the data a given image contains. Most applications of object detection are in automation,
such as self-driving cars that can identify where different cars are in front of it, and smart factories
where a robotic arm can differentiate individual parts and identify which one it needs to grab. The
goal of object detection in image processing is to identify what distinct objects appear in a given
image. The output of an object detection system should be the input image with bounding boxes
overlaid on it which contain each distinct object. The main challenges involved with object detection
pertain to the complexity of the inherent task. The network needs to first determine whether an
object exists within the frame, then find the edges of the object within the frame, and then repeat
this process until all the objects are found. Additionally, the effectiveness of an object detection
network is heavily affected by the size of the window scanning through the image. If the window is
too large, the network can miss smaller objects within the image. However, using smaller windows
increases training time and has the potential to miss very large objects in the image. We approached
these challenges using two different methods, YOLOv3 and Faster R-CNN networks, to explore their
effectiveness.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

2 Methods

2.1 YOLO

2.1.1 Background

YOLO is a new approach to real-time object detection using the philosophy "You Only Look
Once". YOLO is a single CNN that simultaneously covers object detection and object identification,
as opposed to previous approaches which split the detection and identification into two separate
networks. Combining both tasks into a single network significantly decreases training and testing
time as each input image is only processed once instead of twice. Originally, the YOLO method for
object detection was to split the input image into a preset number of smaller cells. The classifier looks
at each individual grid cell, predicts where distinct objects (if any) fall within the cell, and where the
bounding boxes for each object is located. Additionally, the classifier also assigns a class probability
for each object it finds to predict what the object is. The first iteration of YOLO had trouble finding
multiple small objects in a group (such as a flock of birds), was prone to localization errors, and had
poor performance when working with input data whose objects were placed in new ways that were
not present in the input data. Additionally, the original YOLO network could not identify more than
98 bounding boxes in an image due to the method used to split the input image. Overall, YOLO had
less mAP than other object detection networks such as Faster R-CNN and SSD networks.

YOLOv2 improved the algorithm to increase the mAP to match these other networks. To increase
the mAP, YOLOv2 introduced batch normalization to all convolutional layers within the network
and increased the resolution of the classifier - collectively, these increased the mAP by roughly 6%.
Additionally, YOLOv2 started using anchor boxes, similar to Faster R-CNN networks, which allowed
the network to identify over 1000 bounding boxes per image. YOLOv2 also used a smaller feature
extractor than YOLOv1. Collectively, these two changes significantly improved YOLO’s performance
in identifying multiple small objects. To improve the last major issue with YOLOv1, YOLOv2 added
a randomization factor during training to the dimensions of the input data, which increased accuracy
in object detection of images of varying resolution. Lastly, YOLOv1 used the Darknet-19 model as
the base of its classifier, which had improved performance over the original DarkNet classifier.

In 2018, YOLOv3 was developed and featured further small improvements to the YOLO architecture.
This version changed the prediction method for bounding boxes, now predicting only 1 bounding box
for each object to compare against the ground truth as opposed to finding multiple potential boxes.
YOLOv3 also changed from using a singular classifier with a softmax layer applied to the output to
using an individual classifier for each potential class. This increased accuracy for detecting objects
belonging to multiple classes. For example, while a softmax classifier might label a photo of a dog
with “dog=0.4” and “poodle=0.45”. In this case, an unrelated class could be chosen as the prediction
because the main label was split into two classes. Individual classifiers for each object removes this
issue entirely, as the network will recognize the object as “dog=True” and “poodle=True”. YOLOv3
refined the scaling randomization from v2, running the object detection method on 3 specific versions
of the input image. The first version just does classification on the output of the feature extractor
for the input image. The second version upsamples by 2x the output from the third last feature map,
combines it with a feature map from earlier in the network, and performs classification on that data.
This method is repeated again on an earlier feature map in the network. The base of the classifier
was changed once again to Darknet-53, which had increased performance than Darknet-19 while still
being faster than ResNet-101 and ResNet-152, the previous best classifiers available. The architecture
for the YOLOv3 network is shown in Figure 1 and the architecture for the Darknet-53 classifier is
detailed in Figure 2 [7][2].

2.1.2 Specifications and Network Methods

One major advantage YOLOv3 has over other networks is that it only scans an image once and only
predicts one bounding box per object. To achieve this, the YOLOv3 network uses logistic regression
while training to determine the locations of proposed bounding boxes. If a bounding box overlaps with
the ground truth box more than any other box, then the bounding box is given an “objectness” rating
of 1, indicating the box very likely contains an object, and is used as the input to the classifier. Boxes
which somewhat overlap with the label are given an objectness rating proportional to the classifier
box but are not sent to the classifier. Boxes with an objectness value lesser than a specific threshold
are discarded, and a weighted average is taken of the rest of the bounding boxes to determine the

2

coordinates for the final prediction. Each box has 5 identifying values: the coordinates of the corners
and the center. These values are compared to the ground truth, and the loss is computed using the
sum of squared error.

Figure 1: YOLO v3 Architecture [7]

2.2 R-CNN

2.2.1 Background

R-CNN, or Region-CNN, is another method to do object recognition with machine learning. R-CNNs
split an input image into several regions using a complex algorithm called selective search. The
selective search algorithm first splits the image into many very small sections. Then, using a greedy
algorithm approach, similar sections are grouped together to form 2000 region proposals that could
contain an object. The region proposals are reshaped to form a square and are processed by a CNN.
The CNN outputs a 4096-dimensional feature vector which is then processed by an SVM classifier.
The SVM algorithm takes in an input feature vector and predicts whether or not an object is present
in the region. Additionally, if it does predict there is an object, then the algorithm also outputs offset
values for how far the object is from the center of the region. This process is repeated for all 2000
regions, and the bounding boxes of objects are computed using the offset values. When the R-CNN
was developed, it was faster to train than other object detection methods available, but it still is a very
slow method as the SVM has to classify 2000 regions. Testing was slow as well, taking roughly 50
seconds to process an image. Lastly, the selective search algorithm does not change as it processes
more images, so it does not adapt to the training images.

This algorithm was improved with the development of Fast R-CNN. The main difference in the
new algorithm was a change in the ordering of steps. The entire image is first processed by a CNN
that outputs a feature map for the input image. Then, the feature map is split into regions using
the selective search algorithm. Each region is reshaped to a square, processed by a pooling layer
into a fixed size square, and converted into a feature vector. This feature vector is passed through
a softmax layer to classify if the region contains an object. Additionally, the feature vector is sent
through another regression algorithm to determine the offsets for the regions. Since the convolution
is only done once on the input image, this algorithm is considerably faster than the original R-CNN
algorithm. Testing time for an input image dropped to 0.32 seconds, but the selective search algorithm
still took 2 seconds.

Faster R-CNN was developed as an improvement to Fast R-CNN by modifying the region proposal
method. Rather than following the selective search method, the feature map is sent to a separate

3

Figure 2: Darknet-53 Architecture [2]

RPN, or Region Proposal Network, which is a deep CNN that selects regions of interest in the image.
Using an RPN rather than the selective search algorithm reduced total testing time for an image to
0.2 seconds.

2.2.2 RPN Specifications

The RPN uses a sliding window to process the convolutional feature map with a small neural network
according to [4]. The window is mapped to a lower-dimensional feature vector and then passed
through two classifiers, one for box regression to find the corners of the bounding boxes, and the
other to a box classifier to determine the box’s objectness rating. The anchor points for the regions
are also developed using the sliding window. Each set of anchors is a group of 9 boxes generated
from the center of the sliding window. One anchor is created right at the center of the sliding window,
and the other eight anchors are generated with different aspect ratios and at different coordinates
relative to the first. The Intersection-over-Union, or IoU, for each anchor is computed with (1) against
the ground truth boxes, and the anchors are assigned a predicted label p∗ according to (2).The loss
function for the RPN takes p∗ and the corners of the bounding boxes t∗ as inputs, and uses normalized
versions of the classifier and regression loss Lcls (3) and Lreg (4) to compute overall loss. The ground
truth for the label and corner coordinates is denoted as p and t.

IoU =
Area of Intersection of Region and Ground Truth Box

Area of Union
(1)

4

p∗ =

1, if IoU > 0.7

−1, if IoU < 0.3

0, otherwise
(2)

Note: When computing Lcls, p∗ and p are scaled to the range (0, 1).
Lcls = −(p∗log(p) + (1− p∗)log(1− p)) (3)

Lreg(ti − t∗i) =
{
0.5x2, if |x| < 1

|x| − 0.5, otherwise
(4)

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i)

Ncls = mini batch size
Nreg = number of anchor points
λ is a balancing parameter between the two loss functions

(5)

3 Experimental Setup

The main metric used to compare object detection methods is mean average precision (mAP). The
mAP score of a model ranges from 0 to 1 and indicates how well the model was able to correctly
detect objects. The mAP score corresponds to the integral of the precision recall curve for the model.
Precision recall curves show what the precision value is achieved by the model at each recall value.
The formulas for precision and recall are shown in (6). To create a precision recall curve for a test set,
you calculate the precision and recall for each prediction output and plot them. The mAP score is
calculated by smoothing the precision recall curve and then interpolating to get average precision
points for recall values of [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1].

The mAP scores and precision scores are calculated for each method. The testing set contains 300
images from the PASCAL VOC 2012 dataset with a total of 1000 bounding boxes. The pretrained
model used for Faster R-CNN was trained initially on the PASCAL VOC 2007 dataset, which has the
same labels as the 2012 dataset. However, the pretrained model used for YOLO was trained using the
COCO dataset, which has 80 labels. The labels of the COCO dataset also include the 20 labels from
PASCAL VOC. In order to run testing using this network, a dictionary was created to map the labels
from COCO to PASCAL VOC. In addition, the labels for the testing set were restricted to the classes
that are considered to be objects that a car may encounter while driving. Both pretrained models were
evaluated to produce mAP values. The mAP standard used is 0.5, which means bounding boxes with
overlaps of greater than 0.5 are considered to be a match.

In addition, an attempt was made at training each network from scratch. Due to some mathematical
issues encountered, results for training YOLO were not obtained. The Faster R-CNN network was
trained for 8 epochs using the PASCAL VOC Data on the subset of classes mentioned previously.The
precision recall plots and mAP scores are considered for the Faster R-CNN network which was
trained from scratch.

Precision =
TruePositives

TruePositives+ FalsePositives

Recall =
TruePositives

TruePositives+ FalseNegatives

(6)

4 Results

4.1 YOLO

The resultant Precision Recall Curves for the Pre-trained YOLO Model are shown below. Due to
errors with the code the precision recall plots for mAP with threshold 0.5 contained all zeros. This is

5

linked to the fact that we used just a subset of labels that is demonstrated in the file labelMap.py. To
gain some insight into the issue we generated this plot for mAP score with an IoU threshold of 0. We
can see that the graph is very homogeneous. The predictions had labels that matched labels in the true
images but the IoU region overlap was not high enough. This could be because the YOLO images
were resized and we had difficulty scaling the bounding boxes correctly to calculate IoU correctly.

Figure 3: Precision Recall Curves for Pretrained YOLO Model

4.2 R-CNN

Using the pretrained Faster R-CNN network an overall mAP score of 0.7 is achieved. This is
consistent with the general pattern of the work that we have see in the Faster R-CNN paper. When
you look at the precision recall curve for the individual classes you can see a large discrepancy.
However it is evident that the classes with lower mAP have far fewer predicted points in general and
are under represented in the dataset. For example, the cow class has only 3 predictions.

The Faster R-CNN network that is trained from scratch has a lower mAP score of 0.5. This is due to
the fact that training was only for 8 epochs. The training epochs each took roughly 1 hr to run using
70k training images from the PASCAL VOC 2012 dataset. Looking at the training loss curves for
each network it is clear that the model is converging. The training loss reduces steadily while the
validation loss is reducing and flattening out as is expected.

Figure 4: Precision Recall Curves for Pretrained R-CNN Model

Figure 5: Precision Recall Curves for R-CNN Model trained for 8 Epochs

6

Figure 6: Class Precision Recall Curves for Pretrained R-CNN Model

5 Discussion

The precision-recall curves in Figures 4 and 5 show the training differential in R-CNNs. The curve in
Figure 5 is lower than the curve in Figure 4, showing that the model when fully trained was more
accurate than when it was only trained for 8 epochs. This difference is further demonstrated in the
precision-recall curves for individual classes in Figures 6 and 7. The mAP for almost every class is
higher for the fully trained network than the mAP for the scratch R-CNN. Additionally, the training
loss plots in Figure 8 show how significantly the R-CNN model is improved with training. The first
two plots show the training loss for the RPN, the next two show the same for the classifier, and the
last plot shows the training loss for the R-CNN as a whole. The sharp decrease in the plots shows the
loss drop as the network starts being trained.

For YOLO, we tried to get the precision-curves as well but in the process we encountered a couple
of issues. First, the YOLO network was pretrained on the COCO datasets, and we tried to test it on
the PASCAL VOC dataset, which had different label values for the same classes. In order to fix that
we created a mapping for COCO to PASCAL VOC dataset. Next we found that the network was
predicting the bounding boxes for the output feature map, which resulted in the coordinates of the
bounding boxes being placed out of bounds with respect to the input image size for a few images
when traced back. We fixed that problem by creating a threshold for the predicted bounding boxes
to lie within the input image size. In the end, we discovered that separating tasks of detection and
bounding box regression can be very fruitful, however, if we modularize the algorithm fully, we are
able to achieve much faster testing performance, and this consideration is very important, application
and scenario specific. The plot shown in Figure 3 shows the precision-recall curve for the pretrained

7

Figure 7: Class Precision Recall Curves for R-CNN Model trained for 8 Epochs

Figure 8: Training Loss Plots for R-CNN Trained from Scratch
Blue - Training Loss, Yellow - Validation Loss

YOLO network. The precision values are consistently at 1.00 across the recall values, showing that
the network was almost completely accurate in its predictions.

References

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi You Only Look Once: Unified, Real-Time Object
Detection arXiv preprint arXiv:1506.02640, 2016

[2] J. Redmon, and A. Farhadi YOLOv3: An Incremental Improvement arXiv preprint arXiv:1804.02767, 2018

[3] R. Girshick, Microsoft Research Fast R-CNN arXiv preprint arXiv:1504.08083, 2015

8

[4] S. Ren, K. He, R. Girshick, and J. Sun Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks arXiv preprint arXiv:1506.01497, 2016

[5] A. Kathuria Series: YOLO object detector in PyTorch https://blog.paperspace.com/
how-to-implement-a-yolo-object-detector-in-pytorch/

[6] Machine-Vision Research Group Guide to build Faster R-CNN in PyTorch, https:
//medium.com/@fractaldle/guide-to-build-faster-R-CNN-in-pytorch-95b10c273439?
fbclid=IwAR1TFy48DnJWW9mfj-ZFo6Rjk1HTB8rXqFr-CBdEVTkbW2cFYFRKKY6lFZU

[7] A. Kathuria What’s New in YOLOv3? https://towardsdatascience.com/
yolo-v3-object-detection-53fb7d3bfe6b

[8] R. Gandhi R-CNN, Fast R-CNN, Faster R-CNN, YOLO—Object Detection Algorithms https://
towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e

[9] R. Girshick, J. Donahue, T. Darrell, J. Malik Rich feature hierarchies for accurate object detection and
semantic segmentation axXiv preprint arXiv:1506.01497v3, 2016

[10] mc.ai YOLO3: A Huge Improvement https://mc.ai/yolo3-a-huge-improvement/

9

https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/
https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/
https://medium.com/@fractaldle/guide-to-build-faster-R-CNN-in-pytorch-95b10c273439?fbclid=IwAR1TFy48DnJWW9mfj-ZFo6Rjk1HTB8rXqFr-CBdEVTkbW2cFYFRKKY6lFZU
https://medium.com/@fractaldle/guide-to-build-faster-R-CNN-in-pytorch-95b10c273439?fbclid=IwAR1TFy48DnJWW9mfj-ZFo6Rjk1HTB8rXqFr-CBdEVTkbW2cFYFRKKY6lFZU
https://medium.com/@fractaldle/guide-to-build-faster-R-CNN-in-pytorch-95b10c273439?fbclid=IwAR1TFy48DnJWW9mfj-ZFo6Rjk1HTB8rXqFr-CBdEVTkbW2cFYFRKKY6lFZU
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://mc.ai/yolo3-a-huge-improvement/

	Introduction
	Methods
	YOLO
	Background
	Specifications and Network Methods

	R-CNN
	Background
	RPN Specifications

	Experimental Setup
	Results
	YOLO
	R-CNN

	Discussion

